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We consider the linear temporal stability of a Couette flow of a Maxwell gas within the
gap between a rotating inner cylinder and a concentric stationary outer cylinder both
maintained at the same temperature. The neutral curve is obtained for arbitrary Mach
(Ma) and arbitrarily small Knudsen (Kn) numbers by use of a ‘slip-flow’ continuum
model and is verified via comparison to direct simulation Monte Carlo results. At
subsonic rotation speeds we find, for the radial ratios considered here, that the neutral
curve nearly coincides with the constant-Reynolds-number curve pertaining to the
critical value for the onset of instability in the corresponding incompressible-flow
problem. With increasing Mach number, transition is deferred to larger Reynolds
numbers. It is remarkable that for a fixed Reynolds number, instability is always
eventually suppressed beyond some supersonic rotation speed. To clarify this we
examine the variation with increasing Ma of the reference Couette flow and analyse
the narrow-gap limit of the compressible TC problem. The results of these suggest
that, as in the incompressible problem, the onset of instability at supersonic speeds
is still essentially determined through the balance of inertial and viscous-dissipative
effects. Suppression of instability is brought about by increased rates of dissipation
associated with the elevated bulk-fluid temperatures occurring at supersonic speeds. A
useful approximation is obtained for the neutral curve throughout the entire range of
Mach numbers by an adaptation of the familiar incompressible stability criteria with
the critical Reynolds (or Taylor) numbers now based on average fluid properties.
The narrow-gap analysis further indicates that the resulting approximate neutral
curve obtained in the (Ma, Kn) plane consists of two branches: (i) the subsonic part
corresponding to a constant ratio Ma/Kn (i.e. a constant critical Reynolds number)
and (ii) a supersonic branch which at large Ma values corresponds to a constant
product Ma Kn. Finally, our analysis helps to resolve some conflicting views in the
literature regarding apparently destabilizing compressibility effects.

1. Introduction
The Taylor–Couette (TC) instability in a fluid between rotating concentric cylinders

giving rise to a secondary vortical flow (‘Taylor vortices’) is a classical problem
in hydrodynamic stability theory (Chandrasekhar 1961; Drazin & Reid 1981;
Koschmieder 1993). The problem has been investigated extensively for incompressible
fluids. Rayleigh (1916) formulated a stability criterion for the mean viscous flow which
is based on the inviscid perturbation equations. Subsequent analyses have considered
the viscous perturbation equations where transition to instability is governed by Rec,
a critical value of the Reynolds (Re) number, depending on the ratios of cylinders’
radii and rotation speeds. Taylor (1923) studied the narrow-gap approximation. He
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found that, while in this limit Rec → ∞, the transition to instability is governed by a
finite critical value of the Taylor (Ta) number. Others (see Chandrasekhar 1961) have
analysed the problem for arbitrary gap widths and have demonstrated that viscosity
stabilizes the flow in comparison with the inviscid Rayleigh criterion.

Only a relatively few studies have so far addressed the compressible TC problem.
This flow problem is governed by additional parameters, including the temperature
ratio of the cylinders and the Mach (Ma) number. Kuhlthau (1960) conducted
experiments with dry air to study the effects of transonic Mach numbers (Ma ≈ 1)
on the TC instability. During each set of experiments the rotation speed (Ma) was
maintained constant while the average density was increased (i.e. Kn decreased). The
onset of instability was identified through a sharp increase in the torque measured on
the outer (stationary) cylinder. The experiments were carried out for 0.7 � Ma � 1.5
showing an increase in the critical Knudsen number (Knc) with increasing Ma (see
figure 2). The value of Rec (∝ Ma/Knc) was found to be nearly the same as in the
corresponding incompressible problem.

Kao & Chow (1992) assumed axisymmetric perturbations and studied the linear
stability problem for the ratio of the radii of the outer and inner cylinders
RR =Ro/Ri = 2. Their results apparently suggested that increasing Ma had a
destabilizing effect in the sense that it decreased Rec relative to its incompressible
value. Hatay et al. (1993) considered various parameter combinations and non-
axisymmetric perturbations. Their results essentially agreed with those of Kao &
Chow (1992) in that the effect of increasing Ma, which was stabilizing for narrow
gaps, apparently became destabilizing for wider gaps. In both of these studies the
Reynolds number was defined on the basis of the local gas density at the inner
cylinder. Unlike the average density (which is determined by the total mass of
fluid within the gap), the local density is not a priori prescribed in experiments
or simulations. Furthermore, owing to the appearance of both elevated bulk-fluid
temperatures and large radial pressure gradients at supersonic speeds, the local and
average densities significantly differ from each other. Consequently, comparison of
the critical values of the Reynolds numbers based on the local density with their
incompressible counterparts may not provide an unequivocal indication of stabilizing
or destabilizing effect of increasing Ma. Rather, it will be established that the effects of
increasing Ma are adequately correlated and interpreted in terms of modified Re(Re)
and Ta (Ta) numbers which are based on average fluid properties.

For sufficiently wide gaps, instability phenomena in the TC problem occur at
Re � O(102) (Chandrasekhar 1961). Both Kao and Chow (1992) and Hatay et al.
(1993) have studied the problem for Ma � 4. The Knudsen number (∝ Ma/Re)
corresponding to the upper end is Kn ∼ O(10−1). Thus, the very use of the continuum
approach may not be consistent (Cercignani 2000). Furthermore, with the advent of
microfluidic systems (e.g. micro-gas turbines; see Epstein 2004), the TC problem in
rarefied gases have attracted considerable interest in recent years. The axisymmetric
problem has principally been studied by means of the direct simulation Monte Carlo
(DSMC) method (Bird 1994). The numerical simulations follow the evolution of
the system through its terminal state which, in turn, serves to classify the system
response as stable or unstable. Riechelmann & Nanbu (1993) studied the problem
for a Maxwell gas. They justified their application of DSMC to this problem by
demonstrating a close agreement with the experimental results of Kuhlthau (1960).
Stefanov & Cercignani (1993) considered the problem for a hard-sphere gas and found
that, contrary to the above-mentioned claims of Kao & Chow (1992) and Hatay et al.
(1993), increasing Ma had a stabilizing effect for RR =2. Stefanov & Cercignani (1993)
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related this disagreement to the effects of rarefaction which were not considered by
the former authors. They also pointed out the potential usefulness of a stability
analysis based on the ‘slip-flow’ continuum model. Golshtein & Elperin (1995) and
Usami (1995) carried out DSMC calculations for parameter combinations within the
instability domain and studied the form of vortices obtained. Bird (1998) investigated
the time evolution of the vortices and presented results of three-dimensional DSMC
calculations. Aoki, Sone & Yoshimoto (1999) and Yoshida & Aoki (2005) applied
the DSMC method to study the influence on the neutral curve of varying both
temperature and velocity ratios.

All of the above-mentioned DSMC studies demonstrate that TC instability is a
small O(10−2) Knudsen phenomenon. However, the artificial ‘noise’ inherent in these
simulations makes it difficult to identify and characterize the final states clearly,
particularly for parameter combinations in the vicinity of the transition to instability.
Furthermore, these simulations become extremely time-consuming in the continuum
limit, obstructing accurate delineation of the domain of instability. Consequently,
explicit results in the literature have been presented only for a limited number of
parameter combinations.

Recently, Yoshida & Aoki (2006) have studied the corresponding linear stability
problem based on the Bhatnagar–Gross–Krook (BGK) model of the Boltzmann
equation for RR = 2. A close agreement was found with continuum Navier–Stokes
calculations. The present contribution is intended to complement the above studies by
considering the corresponding linear hydrodynamic temporal stability problem based
on the Navier–Stokes ‘slip-flow’ continuum model for (arbitrarily) small Knudsen
numbers. Our main objective is to gain some insight into the physical mechanism
causing suppression of the TC instability at moderately large supersonic speeds of
rotation. In § 2 we formulate the general problem for a perfect monatomic Maxwell
gas. In § 3 the viscous-compressible reference Couette flow is studied. The linear
stability analysis is presented in § 4 and the narrow-gap limit is discussed in § 5.
Finally, some concluding remarks are given in § 6. For convenient reference the
formulations of the linearized perturbation problems are explicitly presented in the
Appendices.

2. Formulation of the problem
We consider a perfect monatomic Maxwell gas confined between concentric

cylinders which are maintained at the same uniform temperature Ti . The gap width
between the cylinders is �R. The inner cylinder is rotating with an angular rate Ωi

while the outer is kept stationary. To render the problem dimensionless we normalize
the position vector by Ri , the velocity vector by Ui = ΩiRi , gas density by its mean
value ρav (associated with the total mass of the gas within the gap), the temperature
by Ti and the pressure by ρavRTi (wherein R denotes the gas constant). The shear
viscosity and heat conductivity are normalized by µi and κi , their respective values
at Ti . The resulting dimensionless problem is governed by the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

momentum equation

ρ
Du
Dt

= − 1

γMa2
∇p +

�R

Ri

1

Re
∇ · p, (2.2)
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and energy equation

ρ
DT

Dt
= −�R

Ri

γ

Pr Re
∇ · q − (γ − 1)p∇ · u + γ (γ − 1)

�R

Ri

Ma2

Re
Φ, (2.3)

as well as the perfect gas equation of state

p = ρT . (2.4)

In the above,

p= µ
[
∇u + (∇u)† − 2

3
∇ · uI] (2.5)

is the Newtonian deviatoric stress,

q = −κ∇T (2.6)

is the heat flux density satisfying the Fourier law and Φ = p : ∇u is the rate of
dissipation. Also appearing above are the parameters Re = ρavUi�R/µi , the Reynolds
number, Ma = Ui/(γRTi)

1/2, the Mach number (with γ = cp/cv denoting the ratio of
the specific heats at constant pressure and volume, respectively), and the Prandtl
number Pr = µicp/κi . For a Maxwell gas γ =5/3, Pr= 2/3 and

µ, κ = T (2.7)

(Chapman & Cowling 1970). The above equations are supplemented by a
normalization condition on the density, ρ̄ = 1 (see (3.1)), and boundary conditions
imposing the vanishing of the normal velocity and specifying the velocity slip and
temperature jump at the walls. Employing a cylindrical coordinate system (r, θ, z),
where z coincides with the common axis of symmetry, and denoting by (U, V, W ) the
corresponding components of u, these boundary conditions are explicitly

U = 0, V =

[
1
0

]
± ζ

(
∂V

∂r
− V

r

)
, W = ± ζ

∂W

∂r
, T = 1 ± τ

∂T

∂r
at r =

[
1

RR

]
(2.8)

(Sone 2002). In (2.8) we make use of ζ =1.1466(�R/Ri)Kn ′ and τ = 2.1904(�R/

Ri)Kn ′ (as obtained by Albertoni, Cercignani & Gotusso 1963 for the BGK model),
wherein Kn ′ denotes the Knudsen number, the ratio of the mean free path, based
on the average density and temperature (see (3.1)), and the gap width, �R. For a
Maxwell gas, using the prevailing variable hard-sphere model (Bird 1981),

Kn ′ =

(
10

3π

)1/2
Ma

Re
T̄ 1/2. (2.9)

3. The reference Couette flow
The reference state is a steady cylindrical Couette flow wherein V (0), the azimuthal

fluid speed, as well as T (0), p(0) and ρ(0) are only functions of the radial coordinate.
Mean values of the various fields are accordingly given by

F̄ =
1

π
(
R2

R − 1
) ∫ RR

1

F (0)r dr. (3.1)

For this flow ∇ · U (0) ≡ 0 and the equation of continuity (2.1) is trivially satisfied for
all Ma. From the azimuthal θ-component of the equation of motion we obtain

d

dr

(
r2p

(0)
rθ

)
=0 (3.2)
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for the rθ-component of the deviatoric stress

p
(0)
rθ = µ(0)r

d

dr

(
V (0)

r

)
. (3.3)

The former equation is readily integrated to yield

p
(0)
rθ =

A

r2
, (3.4)

where the constant A is to be determined subsequently from the boundary conditions
(2.8). Substituting (3.4) into (2.3) leads to

T (0) d

dr

(
T (0)r

dT (0)

dr

)
+

4

9
Ma2A2r−3 = 0, (3.5)

representing the balance between heat conduction and the rate of viscous dissipation.
Integration of this ordinary nonlinear second-order equation together with the
boundary conditions (2.8) yields in principle T (0)(r; A). Integration of the equation
obtained by use of T (0) in conjunction with (2.7), (3.3) and (3.4) and the boundary
conditions (2.8) then yields V (0)(r) and the constant A. Once T (0)(r) and V (0)(r)
have been obtained, p(0)(r) and ρ(0)(r) are calculated from the radial component
of the equation of motion (2.2) together with the equation of state (2.4) and the
normalization condition ρ̄ =1 (see (3.1)). This course is followed in § 5 in the narrow-
gap limit. For an arbitrary gap width, T (0)(r) and V (0)(r) (and subsequently ρ(0)(r)
and p(0)(r)) have been computed by means of MATLAB routines.

Figure 1 describes the effects of increasing Mach number on the radial distribution
of temperature and velocity in the steady Couette flow for RR = 1.12, Kn = 0.014 and
the indicated values of Ma. (Unlike Kn′, associated with the average temperature, Kn
is based on the wall temperature Ti . Here and in subsequent figures we refer to the
latter because it is Kn which is a priori specified in experiments and simulations.)
The distributions of V (0) (lower part) and T (0) (upper part) are presented in terms
of the shifted radial coordinate y = (r − 1)Ri/�R. The solid lines are obtained via
a numerical integration of the above continuum ‘slip-flow’ model. The crosses mark
the corresponding distributions obtained via Monte Carlo simulations. With the
exception of T (0) in the outer portion of the gap at the largest Ma ( = 7) presented,
the two solutions nearly coincide, which lends support to the present use of the
simplified continuum ‘slip-flow’ model. The discrepancy at Ma = 7 could be reduced
by replacing Kn′ in (2.8) with a Knudsen number based on local rather than average
fluid properties. In particular, owing to centrifugal forces and the attendant radial
pressure gradients, at Ma = 7 the local density at the outer cylinder is substantially
larger than the mean, yielding a smaller local Knudsen number and hence a smaller
temperature jump there. However, this modification may not be entirely consistent.
Furthermore, as verified by numerical calculations, it only results in slight changes in
the neutral curve, and has therefore not been pursued.

Figure 1(a) shows that the normalized velocity is only slightly affected by increasing
the Mach number up to Ma =7. This may be related to the above observation that
∇ · u(0) = 0 for the reference Couette flow at all Ma. Furthermore, extrapolation to
large Ma of the narrow-gap result (5.7) indicates a finite limit of the velocity
distribution. Since for all Ma the rate of strain remains essentially bounded at
∼ Ui/�R, so does the velocity slip as well (see (2.8)).

For future reference we note that significant changes do take place in the
temperature distribution. Thus, while at Ma = 0.5, T (0) is still nearly uniform at
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Figure 1. Radial distributions of (a) V (0) and (b) T (0) in the reference Couette flow for
RR = 1.12 and Kn = 0.014 at the indicated values of Ma. The solid lines represent the ‘slip-flow’
continuum model; crosses mark DSMC results.

unity (i.e. the corresponding incompressible solution), with Ma increasing further,
T (0) within the bulk of the fluid, as well as the temperature jump at the walls, is
rapidly increasing. This trend accords with the balance of heat conduction and rate
of dissipation represented by (3.5) and reflects the rapid ( ∼ Ma6 at large Ma for a
narrow gap; see (5.8) et seq.) increase of the latter.

4. Stability analysis
The linear temporal stability analysis of the reference Couette flow is studied by

assuming that it is perturbed by small spatially harmonic perturbations. Thus, the
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Figure 2. The neutral curve separating the plane of parameters (Ma, Kn) into respective
domains of unstable (U), ω > 0, and stable (S), ω < 0, response for RR = 1.12 (solid line). Also
presented are the corresponding DSMC (circles) and experimental (Kuhlthau 1960, crosses)
results together with the curves Re ≈ 127 (dashed) and Re ≈ 127 (dash-dotted).

above-mentioned fields are generically represented by the sum

F (r, θ, z, t) =F (0)(r) + φ(1)(r) exp

[
i

(
Ri

�R
kz + nθ

)
+

Ri

�R
ωt

]
, (4.1)

wherein F (0)(r) represents the steady reference field, the real k and integer n,
respectively represent the axial- and azimuthal-perturbation wavenumbers and the
complex-valued ω its growth rate. Substituting (4.1) in (2.1)–(2.8) and neglecting
nonlinear terms in the perturbations, we obtain the linear homogeneous perturbation
problem (Appendix A). The dispersion relation ω = ω(k, n; Kn, Ma, RR) is calculated
by means of the Chebyshev collocation method (Peyret 2002). This method transforms
the perturbation problem into an algebraic eigenvalue problem consisting of a system
of 6N linear equations satisfied by the perturbations ρ(1), u(1), v(1), w(1), T (1) and p(1) at
N discrete points across the gap. Throughout the domain of parameters corresponding
to subsequent results, convergence of the calculation is established within N < 70. In
particular, unlike DSMC computations, there is no difficulty in obtaining results for
arbitrarily small Kn > 0.

For a stationary outer cylinder our calculations invariably yield real-valued
ω. Accordingly, the onset of instability takes place via ‘exchange of stabilities’
(Chandrasekhar 1961), i.e. ω =0. Furthermore, in all cases examined we found that
the critical mode of instability is axisymmetric, i.e. n= 0. We focus on RR = 1.12 so
as to allow for a comparison with the experimental observations of Kuhlthau (1960).

Figure 2 presents the neutral curve (solid line) separating the (Ma, Kn) plane into
respective stable (S, ω < 0) and unstable (U, ω > 0) domains as obtained from the
calculation outlined above. Also appearing in the figure are our corresponding DSMC
results (circles) and the experimental observations of Kuhlthau (1960, crosses), as well
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as the curves representing Re ≈ 127 (dashed line) and Re= 127 (dash-dotted; see (4.2)
et seq.).

The stability limit in the corresponding incompressible Taylor–Couette problem is
characterized by the critical Reynolds number Re ≈ 127 and wavenumber kcr ≈ 3.13
(Chandrasekhar 1961). The latter wavenumber is obtained at the lower left part of
the present stability boundary and is moderately decreasing with increasing Ma across
the neutral curve to ≈ 2.88 at Ma =15. Furthermore, up to Ma ≈ 1 the present neutral
curve nearly coincides with the dashed line representing Re ≈ 127. These observations
are consistent with T (0)(r) being nearly uniform at subsonic speeds (see figure 1). The
energy equation (2.3) is thus effectively decoupled from the dynamic problem (2.1)–
(2.2) and, with ∇ · u(0) identically vanishing, the latter becomes qualitatively similar to
the corresponding incompressible problem (see § 6).

At transonic speeds (Ma ≈ 1) we note the fair agreement between the present
analysis and the experimental results of Kuhlthau (1960). The relatively small
differences may be attributed to the fact that the experiments were conducted
with dry air whereas the present model considers a monatomic Maxwell gas. With
further increasing Ma � 1 we observe the neutral curve increasingly deviating from
the asymptote Re ≈ 127 towards larger Re values. Perhaps the most remarkable
feature of the present results is that the neutral curve passes through a maximum
(at Ma ≈ 3.65, Kn ≈ 0.0163; cf. Yoshida & Aoki 2006). Thus, for all Kn � 0.0163
there exists an upper bound of Ma beyond which the system recovers its stability.
Alternatively, for a given Re � 127 there is a Mach number beyond which the Couette
flow (which is unstable at all smaller Ma) becomes stable. To verify this result we
have conducted DSMC calculations (Bird 1994). We use a rectangular computational
domain in a meridional plane whose axial dimension is twice the radial gap width.
At the cylindrical walls we assume purely diffuse reflection. Periodicity is imposed
in the axial direction.† The stability problem is studied by considering the initial-
value problem wherein the gas occupying the computational domain is initially at
equilibrium characterized by the uniform density ρav and temperature Ti , and both
cylinders stationary. Rotation of the inner cylinder is impulsively started at t = 0+.
The subsequent evolution of the flow field is followed through its terminal state. Each
circle in the figure marks the largest value of Kn where instability is observed in
the simulation at the corresponding Ma. The agreement between the results of the
molecular nonlinear DSMC calculation of the initial-value problem and the neutral
curve resulting from the linearized eigenvalue problem based on the continuum model
is indeed gratifying. In particular, the occurrence of a maximum beyond which the
neutral curve descends with Ma is unequivocally confirmed.

To gain some insight into this behaviour of the neutral curve we return to figure 1,
which describes the reference Couette flow. Inspection of figure 2 reveals that, for
Kn = 0.014, Ma= 2 and 7 correspond to the points just before entering and shortly
after leaving the unstable domain, respectively. As we have already observed in
figure 1, increasing Ma from 2 to 7 predominantly results in elevated gas temperatures
accompanied by only a relatively small modification of the reference velocity

† For the assumed aspect ratio of the computational domain, this condition corresponds to the
discrete spectrum k = nπ (n = 1, 2, . . .) of perturbation wavenumbers (Manela & Frankel 2005). We
have verified that the location of the neutral curve is rather insensitive to the exact value of the
critical wavenumber. The basic harmonic of the discrete spectrum thus adequately approximates
the above-mentioned 2.88 � kcr � 3.13 (which points to the existence of an ‘adaptation’ mechanism
of the compressible flow).
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distribution. This seems to suggest that, as in the corresponding incompressible
problem, stability is essentially determined through a balance between destabilizing
inertial effects and retarding viscous effects. Such a balance is expressible in terms of a
critical Reynolds number. However, one needs to consider that, owing to the elevated
temperatures at supersonic speeds, bulk-fluid density and viscosity vary considerably
across the fluid. To account roughly for these we introduce

Re =
Ui�R

ν̄

based on ν̄, the mean kinematic viscosity in the reference state. Comparison with (2.9)
yields

Re =

(
10

3π

)1/2
Ma

Kn

(
T (0)

ρ(0)

) −1

, (4.2)

where use is made of (2.7). As mentioned above, the dash-dotted curve in the
figure represents Re ≈ 127. At subsonic speeds, Ma � 1, the ratio T (0)/ρ(0) is nearly
uniform throughout the gap and this curve accordingly coincides with the dashed
line Re ≈ 127. At supersonic speeds T (0)/ρ(0) increases faster than linearly with Ma
(cf. (5.14)). Consequently, in order to maintain a constant value of Re, Kn needs
to diminish with increasing Ma. Thus, the appearance of the descending branch of
the neutral curve is related to increased dissipation rates at supersonic speeds. The
figure demonstrates that Re ≈ 127 is indeed a surprisingly close approximation of the
neutral curve. To gain further insight into the behaviour at supersonic speeds we
consider in the next section the narrow-gap limit of the present problem.

5. The narrow-gap limit
We consider the limit �R/Ri = ε → 0 and use the above-defined shifted radial

coordinate y:

r = 1 + εy. (5.1)

Since V (0) undergoes an O(1) change across the narrow gap, we anticipate that
p

(0)
rθ ∼ O(ε−1) (see (3.3)), and thus select in (3.4) A= A0/ε. Assuming that, for ε → 0,

T (0) ∼ T
(0)
0 + o(1), we obtain from (3.5)

T
(0)
0

d

dy

(
T

(0)
0

dT
(0)
0

dy

)
+

4

9
Ma2A2

0 = 0. (5.2)

Furthermore, it is subsequently established that a consistent limit process of the
stability problem requires that Kn ∼ ε1/2 (see (5.11)). Thus, to leading order in ε, (5.2)
is supplemented with the boundary conditions

T
(0)
0 = 1 at y = 0, 1. (5.3)

From (5.2) one readily verifies that T
(0)
0 is convex, possessing a single maximum

T
(0)
0 = Tm at y = ym. Integrating twice while making use of (5.3) yields

y =
1

2

⎡
⎣1 ∓

(
Tm − T

(0)
0

Tm − 1

)1/2

2Tm + T
(0)
0

2Tm + 1

⎤
⎦ (5.4)
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and

A0 = − 2Tm + 1

Ma
[2(Tm − 1)]1/2 . (5.5)

From (3.3) together with (3.4) we have

dV
(0)
0

dy
=

A0

T
(0)
0

, (5.6)

hence V
(0)
0 is monotonically decreasing and antisymmetric relative to y = 1/2.

Integrating in conjunction with (5.4), (5.5) and (2.8), which effectively becomes a
no-slip condition, we obtain

y =
1

2
− V

(0)
0 − 1/2

1 + Ma2/27

[
1 +

1

18
Ma2 − 2

27
Ma2

(
V

(0)
0 − 1

2

)2
]

(5.7)

and

Tm = 1 +
1

18
Ma2. (5.8)

From the radial component of the equation of motion together with (2.4) and (5.6),
we obtain

p
(0)
0 ∼ A0 [1 +O(ε)], (5.9)

i.e. to leading order p
(0)
0 is uniform throughout the gap indicating that centrifugal

forces become negligible in this limit. Furthermore, from (2.4), (5.4) and (5.7),

ρ
(0)
0 =

1 +Ma2/27

1 + 2Ma2V
(0)
0

(
1 − V

(0)
0

)
/9

. (5.10)

Thus, in agreement with the uniformity of the pressure and the variation of the
temperature across the gap, the density attains a minimum at the middle of the gap
(V (0) = 1/2) and is increasing towards the inner and outer cylinder walls.

From (5.2), (5.5), and (5.8) we find that (as mentioned at the conclusion of § 3) at
large Ma the rate of dissipation indeed grows like Ma6. Owing to this the temperature
within the gap increases like Ma2. In contrast, the variation with growing Ma of the
monotonically diminishing fluid velocity is bounded, and thus V (0)(y; Ma) approaches
a finite limit at large Ma.

For future reference we note that the foregoing derivation for ε → 0 with Ma
fixed may become non-uniform at large Ma. Thus, from (5.4) in conjunction with
(5.11) we find that the temperature jump at the walls becomes non-negligible when
ε1/2Ma4 ∼ 1. Similarly, further increasing Ma, when ε1/2Ma2 ∼ 1, the velocity slip and
the radial pressure gradient at the inner cylinder both become significant. Numerical
calculations at large Ma ( = 7) and diminishing ε confirm that the convergence of p(0)

and V (0) to the above narrow-gap limit is indeed faster than that of T (0). Furthermore,
owing to the diminishing temperature jump for ε → 0, these calculations show that
T (0)(r; Ma, ε) approaches the narrow-gap limit from above.

We now turn to identify the limit process appropriate to the stability analysis
for fixed Ma when ε → 0. In the corresponding incompressible-flow problem (for a
stationary outer cylinder) the Taylor number approaches the constant limit

Ta =
4Ω2

i (�R)4(
R2

R − 1
)
ν2

≈ 3390
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Figure 3. The neutral curve in the compressible narrow-gap limit ε → 0. The solid lines
correspond to the exact numerical solution at the indicated values of ε. The bold solid line
marks the limit ε → 0. The bold dotted curve describes the line Ta ≈ 3390.

(Drazin & Reid 1981). In the present notation Ta ∼ 2Re2ε. Thus, for the results
of the subsequent analysis to reduce with diminishing Ma to their incompressible
counterparts, we require that

Re = ε−1/2Re∗ and Kn = ε1/2Kn∗. (5.11)

The growth rate of perturbations has been normalized above by Ui/�R, whereas in
the incompressible problem it is scaled by νi/(�R)2. Hence, consistency with (5.11)
requires

ω = ε1/2ω∗. (5.12)

(In (5.11) and (5.12) Re∗, Kn∗ and ω∗ are fixed for ε → 0). Finally, inspection of the
perturbation equations (Appendix A) reveals that a consistent limit is obtained by
scaling the various perturbation amplitudes as

ρ(1), T (1), v(1) ∼ O(1) ; u(1), w(1) ∼ O(ε1/2) and p(1) ∼ ε. (5.13)

The perturbation problem thus obtained (see Appendix B) is studied by means of the
Chebyshev collocation method.

Figure 3 examines convergence in the compressible narrow-gap limit ε → 0 when
Ma is fixed. To this end we present the neutral curves (ω∗ =0) in the (Ma, Kn∗) plane.
The solid lines correspond to the exact problem at (finite) diminishing gap widths
represented by the indicated values of ε (ε = 0.12 corresponding to the neutral curve
presented in figure 2). The bold solid line marks the limit ε → 0 and the bold dotted
curve describes the line Ta ≈ 3390 (see (5.14) below).

All the lines presented display qualitatively similar behaviour passing through
respective maxima at some intermediate supersonic speeds (Ma ≈ 3.5–4.5) and
descending thereafter. The line ε = 0.01 nearly coincides with the limit ε → 0 when
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Ma � 3.5. The relatively small discrepancy between these two curves for Ma > 3.5
may be related to the above-mentioned non-uniformity of the limit, in particular,
the non-vanishing temperature jump at finite ε. This, as explained above, causes the
temperature distribution to approach the narrow-gap limit from above. In agreement
with the discussion preceding the introduction of Re, it may thus be anticipated that
the neutral curves converge to the limit ε → 0 from below, as indeed appears in the
figure.

As mentioned above, the dash-dotted line corresponds to Ta ≈ 3390, where Ta is
expressed by use of the relation between Ta and Re, with Re being replaced by Re.
To this end, we obtain from (5.6), (5.9) and (5.10) the average kinematic viscosity

ν
(0)
0 =

(
1 +

1

27
Ma2

)−2 (
1 +

1

9
Ma2 +

2

405
Ma4 +

2

25515
Ma6

)
. (5.14)

Within the subsonic regime Ma � 1 (5.14) shows only a slight variation of ν
(0)
0 (i.e.

Re ≈ Re). Subsequently, ν
(0)
0 grows nonlinearly with Ma, which requires a diminishing

Kn to maintain a constant Ta (Re) (cf. (4.2) et seq.). An extrapolation of (5.14) to

large Mach numbers predicts that ν
(0)
0 grows like ∼ Ma2, thus the right-hand branch

of the neutral curve will approximately correspond to Ma Kn ≈ const.
As in figure 2, the incorporation into the ‘incompressible’ result of an averaged

Reynolds number (intended to account for the variation with Ma of the bulk-gas
properties) yields a good approximation of the neutral curve in the compressible
problem. While there is obviously a certain degree of arbitrariness in selecting the
specific mode of averaging fluid properties, for a narrow gap the various modes
provide qualitatively and quantitatively similar approximations to the actual neutral
curve.

Finally, the present results clearly confirm the stabilizing effect of increasing Ma. As
demonstrated for a narrow gap in (5.10), the local fluid density at the inner (as well as
outer) cylinder wall may significantly exceed the average density at supersonic speeds.
For wider gaps, the radial pressure gradients associated with centrifugal forces will
at supersonic speeds produce at the inner cylinder a local fluid density significantly
smaller than the average. Thus, the rather questionable claim by Kao & Chow
(1992) and Hatay et al. (1993) regarding the destabilizing role of compressibility may
actually originate from a misinterpretation of their results in terms of a Reynolds
number involving this local fluid density. In contrast to this, figures 2 and 3 clearly
demonstrate the advantage of correlation in terms of Re and Ta which, in turn, make
allowance for variation of fluid properties accompanying the elevated temperatures
occurring at supersonic speeds.

6. Concluding comments
We have studied the TC problem for a Maxwell gas confined between a rotating

inner cylinder and a stationary outer cylinder kept at the same temperature, focusing
on the radii ratio RR = 1.12 so as to allow for a comparison with the experimental
results of Kuhlthau (1960). The neutral curve has been obtained through a linearized
temporal stability analysis of a continuum ‘slip-flow’ as well as via molecular
DSMC calculations of the corresponding nonlinear initial-value problem, both models
yielding closely similar results. At subsonic rotation speeds the neutral curve nearly
coincides with the line Re ≈ 127, the critical value in the corresponding incompressible-
flow problem. Close agreement is also obtained with Kuhlthau’s measurements in the
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transonic regime. With increasing Ma � 1 the neutral curve deviates to increasingly
larger values of Re. Furthermore, for increasing Ma at all fixed Re > 127, instability
is eventually suppressed.

Inspection of the variation with increasing Ma of the reference Couette flow reveals
the emergence of elevated bulk-fluid temperatures accompanied by only relatively
modest changes in the velocity distribution (when normalized by the inner cylinder
rotation speed). The latter may be attributed to the above-mentioned fact that u(0)(r)
trivially satisfies ∇ · u(0) = 0 and the continuity equation at all Ma. Moreover, the
inertial (Euler) portion of the equation of motion is not explicitly modified by
compressibility. The elevated bulk temperatures are associated with the increasing
viscous dissipation rates coupled with the dissipation–conduction balance in the
energy equation. These trends are supported by the narrow-gap asymptotic results
showing a limited variation with Ma of V (0)(r) as opposed to the bulk temperatures
growing like ∼ Ma2.

These observations indicate that, as for the incompressible-flow TC problem, the
neutral curve in the present problem essentially reflects a balance between an inertial
destabilizing mechanism and a retarding effect associated with viscous dissipation.
The re-stabilization at supersonic speeds thus results from increasing dissipation rates
which, in turn, are substantially enhanced by the temperature dependence of the gas
viscosity in combination with the elevated temperatures. The Re ≈ 127 and Ta ≈ 3390
curves presented in figures 2 and 3, respectively, roughly account for these effects.

As mentioned above, the present study has focused on RR � 1.12. With increasing
RR , compressibility effects (i.e. density variations resulting from fluid motion through
ambient pressure gradients) are expected to become more significant with growing
centrifugal forces. According to the above observations regarding V (0)(r), essential
elements in Rayleigh’s argument carry over to the compressible-flow problem, in
particular the constancy of the angular momentum (per unit mass) of a fluid element.
Rayleigh’s inertial mechanism may, however, be modified owing to compression
accompanying fluid motion through a non-homentropic field. Further study is
required to clarify these issues, which constitutes a desirable extension of the present
contribution.

Appendix A. The linearized perturbation problem
To simplify notation we omit in the following the superscripts (1) in the expressions

of the perturbations. The resulting perturbation problem consists of the continuity,

ω̂ρ + ρ(0)

(
du

dr
+

u

r
+ in

1

r
v + ik̂w

)
+

dρ(0)

dr
u + in

V (0)

r
ρ = 0, (A 1)

r-momentum,

ω̂ρ(0)u +
ρ(0)V (0)

r
(inu − 2v) − V (0)2

r
ρ = − 3

5γMa2

dp

dr
+

�R

Ri

1

Re
σr, (A 2)

θ-momentum,

ω̂ρ(0)v +
ρ(0)V (0)

r
(inv + u) + ρ(0) dV (0)

dr
u = − 3in

5Ma2

1

r
p +

�R

Ri

1

Re
σθ , (A 3)
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z-momentum,

ω̂ρ(0)w + in
ρ(0)V (0)

r
w = − 3ik̂

5Ma2
p +

�R

Ri

1

Re
σz, (A 4)

and energy,

ω̂ρ(0)T + in
ρ(0)V (0)

r
T + ρ(0) dT (0)

dr
u

=
5�R

2Ri

1

Re
h − 2

3
p(0)

(
du

dr
+

u

r
+ in

1

r
v + ik̂w

)
+

10�R

9Ri

Ma2

Re
D, (A 5)

equations, together with the equation of state

p = ρ(0)T + T (0)ρ. (A 6)

In the above, ω̂ = (Ri/�R)ω and k̂ = (Ri/�R)k. The perturbation problem is
supplemented by the boundary conditions (see (2.8))

u =0, v = ± ζ
∂v

∂r
, w = ± ζ

∂w

∂r
, T = ± τ

∂T

∂r
at r =

[
1

RR

]
. (A 7)

The assumed form (4.1) ensures that the normalization condition for the density
perturbation (i.e. the homogeneous equivalent of (3.1)) is satisfied. In the viscous-
stress terms of (A 2)–(A 4),

σr =
4

3
T (0) d

2u

dr2
+

4

3

(
dT (0)

dr
+

T (0)

r

)
du

dr
−

[
2

3r

dT (0)

dr
+ T (0)

(
4

3r2
+

n2

r2
+ k̂2

)]
u

+
in

3r
T (0) dv

dr
− in

3r

[
2
dT (0)

dr
+ 7

T (0)

r

]
v +

ik̂

3
T (0) dw

dr
− 2ik̂

3

dT (0)

dr
w

+
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r

[
dV (0)

dr
− V (0)

r

]
T , (A 8)

σθ =
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3r
T (0) du

dr
+
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r

[
dT (0)

dr
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+

[
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r
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T , (A 9)

and

σz =
ik̂

3
T (0) du

dr
+ ik̂

(
dT (0)

dr
+

1

3

T (0)

r

)
u − nk̂

3
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3
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In the heat flux and dissipation terms in (A 5),

h = T (0) d
2T

dr2
+

[
2
dT (0)

dr
+

T (0)

r

]
dT

dr
−

[(
n2

r2
+ k̂2

)
T (0) +

1

T (0)

(
dT (0)
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)2
]

T (A 11)
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and

D =

(
dV (0)

dr
− V (0)

r

) [
2in

T (0)

r
u +2T (0) dv

dr
− 2

T (0)

r
v +

(
dV (0)

dr
− V (0)

r

)
T

]
, (A 12)

respectively.

Appendix B. The linearized perturbation problem in the limit ε → 0

Substituting (5.1) together with (5.11)–(5.13) into (A 1)–(A 7), and assuming
axisymmetric perturbations, yields for the leading order

ω∗ρ + ρ
(0)
0

(
du

dy
+ ikw

)
+

dρ
(0)
0

dy
u = 0, (B 1)

ω∗ρ
(0)
0 u − 2ρ

(0)
0 V

(0)
0 v − V

(0)
0

2
ρ = − 3

5Ma2

dp

dy
+

1

Re∗ σ ∗
y , (B 2)

ω∗ρ
(0)
0 v + ρ(0) dV (0)

dy
u =

1

Re∗ σ ∗
θ , (B 3)

ω∗ρ
(0)
0 w = − 3ik

5Ma2
p +

1

Re∗ σ ∗
z , (B 4)

ω∗ρ
(0)
0 T + ρ

(0)
0

dT
(0)
0
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(0)
0
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, (B 5)

ρ
(0)
0 T + T

(0)
0 ρ = 0, (B 6)

together with the boundary conditions

u = v =w = T = 0 at y = 0, 1. (B 7)

The reference fields appearing in (B 2)–(B 6) are those calculated in § 5. Also appearing
in (B 2)–(B 5) are

σ ∗
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4

3
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(0)
0

d2u

dy2
+

4

3
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σ ∗
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σ ∗
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and
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